MachineLearning2 머신러닝(3)-Classification(2) 1.KNN(K-Nearest Neighbor) 1)개요 =>특징들이 가장 유산한 K개의데이터를 찾아서 K개의 데이터를 가지고 다수결로 클래스를 선택해서 할당 =>회귀에 사용할 떄는 그 값의 평균을 구해서 예측 2)특징 =>간단 - 전처리 과정에서 결측치를 대체하는데 사용하기도 합니다 =>모델을 피팅히는 과정이 없음 =>모든 예측 변수들은 전부 수치형이어야 함 거리를 계산하기 때문 이 경우 범주형 데이터는 특별한 경우가 아니면 원 핫 인코딩을 수행해야 합니다. =>게으른 알고리즘이라고 하는데 훈련 데이터 세트를 메모리에 전부 저장하고 거리 계산을 수행 온라인 처리가 안됨 =>장점 -이해하기 쉬운 모델 -많이 조정하지 않아도 좋은 성능을 내는 경우가 있음 =>단점 -예측이느림:어떤 알고리즘이 특별히 있는 것.. 2024. 2. 29. 머신러닝(2)-Classification(1) 1.분류 1)개요 =>데이터를 가지고 어떤 결정을 해야 하는 문제를 접하는 경우에 결정해야 하는 Target이 이미 알려진 범주형인 경우 이미 알려져 있으므로 지도 학습(Supervised Learning) =>분류의 유형은 이진 분류(Binary) 와 다중 분류( Multiclass) 로 분류하기도 하고 선형 분류 (linear) 와 비선형(polynomial)로 나누기도 합니다. =>sklearn의 분류기들은 예측하기 위한 함수로 2가지를 사용 predict:분류 결과 predict_proba:각 클래스에 대한 확률 (확률이 가장 높은 결과가 predict 의 결과) 2)분류 알고리즘 =>판별 분석 =>랜덤 분류 =>KNN =>SVM(support vector machine) =>나이브 베이즈 =>로.. 2024. 2. 28. 이전 1 다음