tree모델1 머신러닝(3)-Classification(2) 1.KNN(K-Nearest Neighbor) 1)개요 =>특징들이 가장 유산한 K개의데이터를 찾아서 K개의 데이터를 가지고 다수결로 클래스를 선택해서 할당 =>회귀에 사용할 떄는 그 값의 평균을 구해서 예측 2)특징 =>간단 - 전처리 과정에서 결측치를 대체하는데 사용하기도 합니다 =>모델을 피팅히는 과정이 없음 =>모든 예측 변수들은 전부 수치형이어야 함 거리를 계산하기 때문 이 경우 범주형 데이터는 특별한 경우가 아니면 원 핫 인코딩을 수행해야 합니다. =>게으른 알고리즘이라고 하는데 훈련 데이터 세트를 메모리에 전부 저장하고 거리 계산을 수행 온라인 처리가 안됨 =>장점 -이해하기 쉬운 모델 -많이 조정하지 않아도 좋은 성능을 내는 경우가 있음 =>단점 -예측이느림:어떤 알고리즘이 특별히 있는 것.. 2024. 2. 29. 이전 1 다음