Study/Deep learning9 Deep Learning(3) - Optimizer 와 activation함수 알아보기 1.subclassing 1)개요 -Sequential API 나 Functional API는 선언적 방식인데 사용할 층과 연결 방식을 정의한 후 모델에 데이터를 주입해서 훈련이나 추론을 하는 방식 -선언적 방식은 장점이 많은데 모델을 저장하거나 복사 또는 공유하기 쉬우며 모델의 구조를 출력하거나 분석하기도 좋고 프레임워크가 크기를 짐작하고 타입을 확인해서 에러를 일찍 발견할 수 있고 디버깅하기도 쉬움 정적이라는 단점이 존재하는데 수정하지 못함 - subclassing 은 기존의 클래스를 상속받아서 수정해서 사용하는 것 -Models 클래스를 상속받고 _init_메서드에서 필요한 층을 만들고 call 메서드 안에서 수행하려는 연산을 기술하고 출력층을 리턴하도록 작성 -subclassing을 하고자 하면 .. 2024. 3. 20. DeepLearning(2)-딥러닝 기초 1.Keras =>모든 종류의 신경망을 손쉽게 만들고 훈련, 평가, 실행할 수 있는 고수준 딥러닝 API =>API 문서는 https://keras.io Keras: Deep Learning for humans A superpower for developers. The purpose of Keras is to give an unfair advantage to any developer looking to ship Machine Learning-powered apps. Keras focuses on debugging speed, code elegance & conciseness, maintainability, and deployability. When you cho keras.io =>거의 모든 딥러닝 라이.. 2024. 3. 19. Deep Learning(1) - 개요 1.개요 =>여러 비선형 변환 기법의 조합을 통해 높은 수준의 추상화를 시도하는 머신러닝 알고리즘의 집합 =>연속된 층(Layer)에서 점진적으로 의미있는 표현을 배우는 방식 =>기존의 머신러닝 방법은 1~2가지의 데이터 표현을 학습하지는 얕은 학습을 수행하지만 딥 러닝은 수백 개 이상의 층을 이용 =>데이터로부터 표현을 학습하는 수학 모델 =>층을 통과할 때 마다 새로운 데이터 표현을 만들어 가면서 학습 1)작동 원리 =>층에서 입력 데이터가 처리되는 내용은 일련의 숫자로 이루어진 층의 가중치에 저장이 되는데 이는 그 층의 가중치를 parameter로 갖는 함수로 표현 =>이 가중치를 알아낼려면 데이터를 관찰해야 하고 신경망의 출력이 기대하는 것 보다 얼마나 벗어났지를 측정해야 합니다 딥러닝은 기본적으.. 2024. 3. 18. 이전 1 2 다음