본문 바로가기

Study103

Deep learning(4) - CNN 1. colab 에서 사용시 데이터 활용 =>구글 드라이브 마운트 from google.colab import drive drive.mount('/content/drive') 2.CNN개요 =>CNN(Concolutional Neural Network) 은 대뇌의 시각 피질 연구에서 시작되었구 1980년대 부터 이미지 인식 분야에서 사용되었는데 최근에는 복잡한 이미지 처리 문제에서 사람의 성능을 능가하기도 함 =>최근에는 이미지 검색 서비스, 자율 주행, 영상 자동 분류 시스템에 큰 기여를 함 =>음성 인식 분야나 자연어 처리같은 다른 작업에도 사용됨 =>뉴런들이 시각의 일부 범위 안에 있는 시각 자극에만 반응 =>고수준 뉴런이 이웃한 저수준 뉴런의 출력에 기반 =>이미지 인식 분야에서는 완전 연결 층의.. 2024. 3. 21.
Deep Learning(3) - Optimizer 와 activation함수 알아보기 1.subclassing 1)개요 -Sequential API 나 Functional API는 선언적 방식인데 사용할 층과 연결 방식을 정의한 후 모델에 데이터를 주입해서 훈련이나 추론을 하는 방식 -선언적 방식은 장점이 많은데 모델을 저장하거나 복사 또는 공유하기 쉬우며 모델의 구조를 출력하거나 분석하기도 좋고 프레임워크가 크기를 짐작하고 타입을 확인해서 에러를 일찍 발견할 수 있고 디버깅하기도 쉬움 정적이라는 단점이 존재하는데 수정하지 못함 - subclassing 은 기존의 클래스를 상속받아서 수정해서 사용하는 것 -Models 클래스를 상속받고 _init_메서드에서 필요한 층을 만들고 call 메서드 안에서 수행하려는 연산을 기술하고 출력층을 리턴하도록 작성 -subclassing을 하고자 하면 .. 2024. 3. 20.
DeepLearning(2)-딥러닝 기초 1.Keras =>모든 종류의 신경망을 손쉽게 만들고 훈련, 평가, 실행할 수 있는 고수준 딥러닝 API =>API 문서는 https://keras.io Keras: Deep Learning for humans A superpower for developers. The purpose of Keras is to give an unfair advantage to any developer looking to ship Machine Learning-powered apps. Keras focuses on debugging speed, code elegance & conciseness, maintainability, and deployability. When you cho keras.io =>거의 모든 딥러닝 라이.. 2024. 3. 19.
Deep Learning(1) - 개요 1.개요 =>여러 비선형 변환 기법의 조합을 통해 높은 수준의 추상화를 시도하는 머신러닝 알고리즘의 집합 =>연속된 층(Layer)에서 점진적으로 의미있는 표현을 배우는 방식 =>기존의 머신러닝 방법은 1~2가지의 데이터 표현을 학습하지는 얕은 학습을 수행하지만 딥 러닝은 수백 개 이상의 층을 이용 =>데이터로부터 표현을 학습하는 수학 모델 =>층을 통과할 때 마다 새로운 데이터 표현을 만들어 가면서 학습 1)작동 원리 =>층에서 입력 데이터가 처리되는 내용은 일련의 숫자로 이루어진 층의 가중치에 저장이 되는데 이는 그 층의 가중치를 parameter로 갖는 함수로 표현 =>이 가중치를 알아낼려면 데이터를 관찰해야 하고 신경망의 출력이 기대하는 것 보다 얼마나 벗어났지를 측정해야 합니다 딥러닝은 기본적으.. 2024. 3. 18.
NLP(3)-문서 군집화,연관분석,추천시스템 1.문서 군집화 1)개요 =>비슷한 구성의 텍스트 문서를 군집화하는 것 =>텍스트 문서들을 읽어서 피처화 한 후 군집 알고리즘을 적용 =>영화의 줄거리가 있는 경우 비슷한 장르의 영화를 군집화 하는 것이 가능 우리나라 VOD 서비스는 대부분 장르를 업로드하는 곳에서 선택합니다 동일한 VOD인데 장르가 다르게 설정되기도 합니다. 2)문서 군집화 수행 =>데이터:Opinosis 데이터셋 여러 개의 텍스트를 읽어야 할 때는 되도록이면 하나의 디렉토리에 모아놓으면 편리합니다. glob 모듈을 이용해서 경로를 지정하면 경로 안에 있는 모든 파일명을 찾아올 수 있습니다. 확장자 지정도 가능하기 때문에 되도록이면 확장자도 맞추는 것이 좋습니다. 확장자는 or 가 가능합니다. 로그파일은 하나로 구성하는 경우가 별로 없.. 2024. 3. 14.
NLP(2) - 실습 1.KAGGLE의 IMDB 영화평 지도 학습 기반 => url - https://www.kaggle.com/c/word2vec-nlp-tutorial/data Bag of Words Meets Bags of Popcorn | Kaggle www.kaggle.com =>데이터 구조:id (유저의 아이디), sentiment(감성으로 긍정이 1 , 부정이 0), review(리뷰) 이 경우는 레이블이 있는 데이터를 가지고 범주를 예측하는 것과 동일 자연어는 피처가 문장으로 주어지기 떄문에 문장을 피처 벡터화 작업을 해주는 것이 다릅니다. 이 때 모든 단어를 각각의 피처로 만들고 각 문장은 피처의 존재 여부를 데이터로 소유합니다. 자연어 처리에서 feature 를 만드는 방법이 다른데 , 영어는 word_to.. 2024. 3. 14.